Herrera, C.; Ponge, D.; Raabe, D.: Microstructural evolution during hot working of 1.4362 duplex stainless steel. 2nd International Symposium on Steel Science (ISSS 2009), Kyoto, Japan (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Experimental study on orientation gradients and GNDs in ultrafine grained dual-phase steels. International Conference on Processing & Manufacturing of Advanced Materials (THERMEC 2009), Berlin, Germany (2009)
Nnamchi, P.; Ponge, D.; Raabe, D.; Barani, A.; Bruckner, G.; Krautschik, J.: Influence of the As-Cast Microstructure on the Evolution of the Hot Rolling Textures of Ferritic Stainless Steels with Different Compositions. 15th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Large Strain Warm Deformation and Subsequent Intercritical Annealing. ISUGS 2007 (International Symposium on Ultrafine Grained Steels), Kitakyushu, Japan (2007)
Ardehali Barani, A.; Ponge, D.; Kaspar, R.: Improvement of Mechanical Properties of Spring Steels through Application of Thermomechanical Treatment. Steels for Cars and Trucks, Wiesbaden, Germany (2005)
Ardehali Barani, A.; Ponge, D.: Morphology of Martensite Formed From Recrystallized or Work-Hardened Austenite. Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, USA (2005)
Ardehali Barani, A.; Ponge, D.: Effect of Austenite Deformation on the Precipitation Behaviour of Si–Cr spring Steels During Tempering. Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, USA (2005)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Microstructure control and mechanical properties of ultrafine grained dual phase steels. Lecture: Osaka University, Osaka [Japan], December 24, 2008
Ponge, D.: Warmumformbarkeit von Stahl. Lecture: Kontaktstudium Werkstofftechnik Stahl, Teil III, Technologische Eigenschaften, Werkstoffausschuss im Stahlinstitut VDEh, Technische Universität Dortmund, June 22, 2008
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of ultrafine grained dual phase steels. Lecture: National Institute for Materials Science (NIMS), Tsukuba, Japan, October 22, 2007
Storojeva, L.; Ponge, D.; Raabe, D.: Halbwarmwalzen als ein neues Produktionskonzept für Kohlenstoffstähle. Lecture: Max-Planck Hot Forming Conference, MPI für Eisenforschung GmbH, Düsseldorf, Germany, December 05, 2002
Sam, H. C.: Role of microstructure and environment on delayed fracture in a novel lightweight medium manganese steel. Master, Augsburg University (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
In order to estimate the kinetics of thermally activated processes, one must determine the energy of the transition state. This transition state is a first-order saddle point on the potential energy surface, i.e., it is a maximum along the reaction coordinate, but a minimum with respect to all other directions in configurational space. We have…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…