Guo, Y.; Hu, J.; Han, Q.; Sun, B.; Wang, J.; Liu, C.: Microstructure diversity dominated by the interplay between primary intermetallics and eutectics for Al–Ce heat-resistant alloys. Journal of Alloys and Compounds 899, 162914 (2022)
Wang, X.; Liu, C.; Sun, B.; Ponge, D.; Jiang, C.; Raabe, D.: The dual role of martensitic transformation in fatigue crack growth. Proceedings of the National Academy of Sciences of the United States of America 119 (9), e2110139119 (2022)
Wan, D.; Ma, Y.; Sun, B.; Razavi, S. M. J.; Wang, D.; Lu, X.; Song, W.: Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope. Journal of Materials Science & Technology 85, pp. 30 - 43 (2021)
Varanasi, R. S.; Zaefferer, S.; Sun, B.; Ponge, D.: Localized deformation inside the Lüders front of a medium manganese steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 824, 141816 (2021)
Li, X.; Sun, B.; Guan, B.; Jia, Y.-F.; Gong, C.-Y.; Zhang, X.; Tu, S.-T.: Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium. International Journal of Fatigue 146, 106142 (2021)
Yang, Y.; Mu, W.; Sun, B.; Jiang, H.; Mi, Z.: New insights to understand the strain-state-dependent austenite stability in a medium Mn steel: An experimental and theoretical investigation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 809, 140993 (2021)
Zhang, J.; Huang, M.; Sun, B.; Zhang, B.; Ding, R.; Luo, C.; Zeng, W.; Zhang, C.; Yang, Z.; van der Zwaag, S.et al.; Chen, H.: Critical role of Lüders banding in hydrogen embrittlement susceptibility of medium Mn steels. Scripta Materialia 190, pp. 32 - 37 (2021)
An, D.; Zhao, H.; Sun, B.; Zaefferer, S.: Direct observations of collinear dislocation interaction in a Fe–17.4 Mn–1.50 Al–0.29 C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction. Scripta Materialia 186, pp. 341 - 345 (2020)
Haghdadi, N.; Cizek, P.; Hodgson, P. D.; He, Y.; Sun, B.; Jonas, J. J.; Rohrer, G. S.; Beladi, H.: New insights into the interface characteristics of a duplex stainless steel subjected to accelerated ferrite-to-austenite transformation. Journal of Materials Science 55 (12), pp. 5322 - 5339 (2020)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…