Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Pauna, H.; Ernst, D.; Zarl, M.; Souza Filho, I. R.; Kulse, M.; Büyükuslu, Ö.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Schenk, J.et al.; Fabritius, T.; Raabe, D.: The Optical Spectra of Hydrogen Plasma Smelting Reduction of Iron Ore: Application and Requirements. Steel Research International 95 (8), 2400028 (2024)
Sandim, M. J. R.; Nagamine, L. C. M.; Kwiatkowski da Silva, A.; Aota, L. S.; Han, L.; Cohen, R.; Zschommler Sandim, H. R.; Gault, B.; Souza Filho, I. R.: Anomalous magnetization induced by local chemistry fluctuations in Mn-containing a'-martensite. Acta Materialia 272, 119956 (2024)
Springer, H.; Souza Filho, I. R.; Choisez, L.; Zarl, M. A.; Quick, C.; Horn, A.; Schenk, J.: Iron ore wires as consumable electrodes for the hydrogen plasma smelting reduction in future green steel production. Sustainable Materials and Technologies 39, e00785 (2024)
Rodrigues Souza Filho, I.; Knabl, W.; Kestler, H.; Ricardo Zschommler Sandim, H.: Strain-rate effects on the recrystallization of molybdenum-based MZ17 alloy. International Journal of Refractory Metals and Hard Materials 112, 106124 (2023)
Souza Filho, I. R.; Ma, Y.; Raabe, D.; Springer, H.: Fundamentals of Green Steel Production: On the Role of Gas Pressure During Hydrogen Reduction of Iron Ores. JOM-Journal of the Minerals Metals & Materials Society 75, pp. 2274 - 2286 (2023)
Aota, L. S.; Souza Filho, I. R.; Roscher, M.; Ponge, D.; Sandim, H. R. Z.: Strain hardening engineering via grain size control in laser powder-bed fusion. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 838, 142773 (2022)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…