Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjanto, D. D.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA, May 17, 2011 - May 19, 2011. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, (2012)
Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. Plasticity ’14: The 20th International Symposium on Plasticity & Its Current Applications, Nassau, Bahamas, USA (2014)
Kords, C.; Eisenlohr, P.; Roters, F.: On a proper account of plastic size effects in continuum models including the flux of dislocation density. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. 11th World Congress on Computational Mechanics (WCCM XI) and 5th European Conference on Computational Mechanics (ECCM V)
, Barcelona, Spain (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in singlecrystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. EMMC-14, 14th European Mechanics of Materials Conference
, Gothenburg, Sweden (2014)
Roters, F.; Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Raabe, D.: The general crystal plasticity framework 'DAMASK'. Institutsseminar, Institute of Materials Simulation, Department of Materials Science, University of Erlangen-Nürnberg, Fürth, Germany (2013)
Kords, C.; Eisenlohr, P.; Roters, F.: What contributes to the dislocation network stress driving continuum dislocation dynamics? Kolloquium der Forschergruppe 1650, Bad Herrenalb, Germany (2013)
Roters, F.; Eisenlohr, P.; Diehl, M.; Kords, C.; Raabe, D.: The general crystal plasticity framework DAMASK. Colloquium Materials Modelling / Werkstoffkunde und Festigkeitslehre at Institut für Materialprüfung, Stuttgart, Germany (2012)
Kords, C.; Eisenlohr, P.; Roters, F.: A nonlocal crystal plasticity model used to solve heterogeneous boundary value problems for 3D microstructures. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Roters, F.; Eisenlohr, P.; Tjahjanto, D. D.; Kords, C.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using FEM and FFT based numerical solvers. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. Euromat 2011, Montpellier, France (2011)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. 2nd International Conference on Material Modelling ICMM 2, Paris, France (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…