Valtiner, M.; Grundmeier, G.: Towards a deeper understanding of molecular adhesion mechanisms by a combined approach of single molecule adhesion and DFT studies. 23. Workshop “Novel Materials and Superconductors”, Universitätssportheim Planneralm, Donnersbach, Austria (2008)
Valtiner, M.; Grundmeier, G.: Molecular Adhesion Mechanisms on Single Crystalline, Hydroxide Stabilized ZnO(0001) Surfaces. MRS fall meeting 2007, Boston, MA, USA (2007)
Valtiner, M.; Grundmeier, G.: Towards a better understanding of adhesion by a combined approach of single molecule adhesion and DFT studies. ECASIA 07, Brussels, Belgium (2007)
Todorova, M.; Valtiner, M.; Neugebauer, J.: Stabilisation of polar ZnO(0001) surfaces in dry and humid environment. FIESTAE - Frontiers in Interface Science: Theory and Experiment, Berlin, Germany (2011)
Todorova, M.; Valtiner, M.; Grundmeier, G.; Neugebauer, J.: Temperature Stabilised surface reconstructions at polar ZnO(0001). Gordon Research Seminar ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Keil, P.; Valtiner, M.; Grundmeier, G.: In-situ XAS investigations of the ZnO(0001)–Zn surface and electrolyte interface during dissolution and as a function of pH. Gordon Research Conference, Science of Adhesion, Colby-Sawyer College, New London, NH, USA (2009)
Grundmeier, G.; Valtiner, M.: Nanoscopic understanding of the surface chemistry and stability of polar ZnO(0001)-Zn surfaces in aqueous solutions. The 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Valtiner, M.; Grundmeier, G.: Acidic dissolution mechanism, pH-dependent stability and adhesion of single molecules studied on single crystalline ZnO(0001)–Zn model surfaces by in-situ AFM studies. Gordon Conference Graduate Research Seminar on Aqueous Corrosion, Colby Sawyer College, New London, NH, USA (2008)
Valtiner, M.; Grundmeier, G.: Acidic dissolution mechanism, pH-dependent stabilization and adhesion of single molecules on single crystalline ZnO(0001)–Zn model surfaces studied by in-situ AFM and DFT simulation. PSI-k Summerschool for Modern Concepts for Creating and Analyzing Surfaces and Nanoscale Materials, Sant Feliu de Guixols, Spain (2008)
Valtiner, M.; Grundmeier, G.: Study of Molecular Adhesion on ZnO(0001) by means of Single Molecule Adhesion Studies. 15th WIEN2k workshop, Vienna, Austria (2008)
Valtiner, M.; Keil, P.; Grundmeier, G.: The structure of the ZnO(0001)-Zn surface and interface during acidic dissolution. HASYLAB users' meeting 2007 "Research with Synchrotron Radiation and FELs, Hamburg, Germany (2007)
Valtiner, M.: Non-linear optics. Lecture: Specialized class on “Non-linear optics”, RUB (substituted for Prof. K. Morgenstern), SS 2014, Bochum, Germany, April 01, 2014 - September 30, 2014
Erbe, A.; Valtiner, M.; Muhler, M.; Mayrhofer, K. J. J.; Rohwerder, M.: Physical chemistry of surfaces and interfaces. Lecture: Course for PhD students of the IMPRS Surmat, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - October 31, 2013
Hu, Q.: A Contribution to Elucidate Interfacial Electric Double Layer Structures and Their Effects on Tribological Phenomena Using Force Microscopy. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2018)
Utzig, T.: A contribution to understanding interfacial adhesion based on molecular level knowledge. Dissertation, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (2016)
Valtiner, M.; Grundmeier, G.: Atomistic Understanding of Structure, Stability and Adhesion at ZnO/Electrolyte Interfaces. Dissertation, Technische Universität Wien, Fakultät der technischen Chemie, Wien, Austria (2008)
Möllmann, V.; Keil, P.; Valtiner, M.; Wagner, R.; Lützenkirchen-Hecht, D.; Frahm, R.; Grundmeier, G.: Structural properties of Ag@TiO2 nanocomposites measured by means of refection mode XAS measurements at beamline 8. (2008)
Valtiner, M.; Keil, P.; Grundmeier, G.: In-situ reflection mode XAS measurements of non equilibrium dissolution processes in aqueous electrolytes at beamline E2. (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.