Rohwerder, M.: Zinc alloy coatings and nano-composite coatings for corrosion protection: From the basics to new challenges. IIM NMD ATM 2019: Advanced Materials for Industrial and Societal Applications, Kovalam, Thiruvananthapuram, India (2019)
Rohwerder, M.: Intelligent coatings for corrosion protection: on the need for new coating concepts. International Conference on Corrosion Protection and Application (ICCPA 2019), Chongqing, China (2019)
Rohwerder, M.: Scanning Kelvin Probe based techniques for mapping hydrogen distribution in metals and their application for investigating hydrogen embrittlement. Workshop “Hydrogen in Metals”, St Anne’s College, Oxford, UK (2019)
Uebel, M.; Rabe, M.; Rohwerder, M.: The Influence of Microstructure on Zn–Al–Mg Alloy Reactivity: A SKP-based Approach. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH – Scientific Highlights Session, Düsseldorf, Germany (2019)
Rohwerder, M.: Die Kelvinsondentechnik in der Korrosion: von der Grundlagenforschung bis hin zu potentiellen Anwendungen im Feld. ProcessNet Meeting “Elektrochemische Prozesse”, Dechema-Haus, Frankfurt, Germany (2019)
Uebel, M.; Rohwerder, M.: The influence of microstructure on Zn–Al–Mg alloy reactivity investigated by SKP and SKPFM in changing atmospheres. Eurocorr 2018, Krakow, Poland (2018)
Rohwerder, M.; Tran, T. H.: Novel zinc-nanocontainer composite coatings for intelligent corrosion protection. 11th Intrenational Conference on Zinc And Zinc Alloy Coated Steel Sheet- GALVATECH 2017, The University of Tokyo, Tokyo, Japan (2017)
Merz, A.; Rohwerder, M.: Corrosion protection by composite coatings containing conducting polymer particles: elucidation of the “protection zone”. 232nd ECS Fall Meeting 2017, National Harbour, USA (2017)
Rohwerder, M.: Organic coatings for corrosion protection: self-healing at the delaminated interface. 232th Meeting of the Electrochemical Society, National Harbor, USA (2017)
Uebel, M.; Rohwerder, M.: Capsular networking and accelerated trigger signal spreading velocity in smart redox responsive coatings for corrosion protection. 232nd ECS Fall Meeting 2017, National Harbor, MD (greater Washington, DC area), USA (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. ECASIA 2017, Montpellier, France (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. Second International Conference on Electrochemical Science and Technology – ICONEST 2017, Indian Institute of Science, Bangalore, India (2017)
Uebel, M.; Rohwerder, M.: The impact of trigger signal spreading velocity on self-healing performance in smart anti-corrosion coatings. 6th International Conference on Self-Healing Materials (ICSHM) 2017, Friedrichshafen, Germany (2017)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 10th International Workshop on Application of Electrochemical Techniques to Organic Coatings –AETOC, Billerbeck, Germany (2017)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.