Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: Stress-strain partitioning in martensitic-ferritic steels analyzed by integrated full-field crystal plasticity simulations and high resolution in situ experiments. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: Coupled high resolution strain and microstructure mapping based on digital image correlation and electron backscatter diffraction. IMPRS-SurMat Seminar, Meschede, Germany (2013)
Tasan, C. C.; Hoefnagels, J. P. M.; Raabe, D.: Quantative damage analysis & in-situ testing to investigate cut-edge failures in AHSS. Cut-edge behavior and damage resistance of AHSS, Maizières-lès-metz, France (2013)
Koyama, M.; Tasan, C. C.; Akiyama, E.; Tsuzaki, K.; Raabe, D.: Influence of hydrogen on dual-phase steel micro-mechanics. 2nd International Workshop on Physics-Based Modelling of Material Properties & Experimental Observations, Antalya, Turkey (2013)
Scharifi, E.; Tasan, C. C.; Hoefnagels, J. P. M.; Raabe, D.: Microstructural analysis of strain rate sensitivity of dual-phase steel. Materials Science Engineering (MSE) 2012, Darmstadt, Germany (2012)
Tasan, C. C.: Multi-scale (in-situ) investigation of Adaptive Structural Materials. École Seminar, Nationale Supérieure des Mines de St-Étienne, St-Etienne, France (2012)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: In-situ investigations of small strain plasticity in dual-phase steel. 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing, China (2012)
Moerman, J.; Romano, P.; Tasan, C. C.; van Liempt, P.: Evaluation of geometrically necessary dislocations density (GNDD) near phase boundaries in dual phase steels by means of EBSD. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…