Lill, K. A.; Stratmann, M.; Frommeyer, G.; Hassel, A. W.: On the corrosion resistance of a new class of FeCrAl light weight ferritic steels. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Falat, L.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: Iron aluminium alloys with strengthening carbides and intermetallic phases for high-temperature applications. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Frommeyer, G.; Derder, C.; Jiménez, J. A.: High temperature plasticity -superplasticity and creep- of Fe3Al based alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Frommeyer, G.; Liu, Z. G.; Wesemann, J.; Wanderka, N.: Investigations on D03/B2 ordering in Fe3Al by X-ray Diffraction, TEM and APFIM. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Stein, F.; Schneider, A.; Frommeyer, G.: Quaternary Fe3Al-Based Alloys with Transition Metals: Effect of Alloying Additions on the Order-Disorder Transitions and the Mechanical Behaviour. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
Frommeyer, G.; Knippscheer, S.: Mikrostrukturen, Eigenschaften und Anwendungen neuentwickelter Leichtbauwerkstoffe auf der Basis von Titanaluminiden. Diehl Symposium, Lengenfeld (2003)
Frommeyer, G.: Structures and Properties of the Refractory Silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) Eutectic Alloys. NATO Advanced Research Workshop: Metallic Materials with high Structural Efficiency, Kiev, Ukraine (2003)
Frommeyer, G.; Brüx, U.: Structures and Properties of Advanced High-Strength and Supra-Ductile Light-Weight Steels. EURO MAT 2003, Lausanne, Schweiz (2003)
Frommeyer, G.: Neuere Entwicklungen der Stahlforschung: Hochfeste und supraduktile TRIP/TWIP Leichtbaustähle. Nordrhein-Westfälische Akademie der Wissenschaften, Düsseldorf, Germany (2003)
Frommeyer, G.: Superplastizität und superplastische Blechumformung von Duplex-Stählen am Beispiel der Qualität X 12 Cr Ni Mo (N) 22-5-3. VDI Seminar: Innovative Rostfreistähle, Düsseldorf (2003)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…