Herbig, M.: How correlative transmission electron microscopy and atom probe tomography could benefit from a 3D nanobeam diffraction orientation mapping technique. Workshop on Scientific Directions for Future Transmission Electron Microscopy, Forschungszentrum Jülich, Jülich, Germany (2016)
Herbig, M.: Joint Characterization of Crystallography and Chemistry on the Nanometer Scale by Correlative Electron Microscopy and Atom Probe Tomography. Talk at Ernst Ruska-Centre, Forschungszentrum Jülich, Jülich, Germany (2016)
Herbig, M.: Investigation of Segregation Phenomena in Steels by Correlative Transmission Electron Microscopy and Atom Probe Tomography. International Conference on Atom Probe Tomography & Microscopy 2016, Gyeongju, South Korea (2016)
Raabe, D.; Choi, P.-P.; Gault, B.; Ponge, D.; Yao, M.; Herbig, M.: Segregation engineering for self-organized nanostructuring of materials - from atoms to properties? APT&M 2016 - Atom Probe Tomography & Microscopy 2016 (55th IFES) , Gyeongju, South Korea (2016)
Kuzmina, M.; Gault, B.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.: From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms. Res Metallica Symposium, Department of Materials Engineering, KU Leuven, Leuven, The Netherlands (2016)
Ponge, D.; Herbig, M.; Tasan, C. C.; Raabe, D.: Integrated experimental and simulation analysis of dual phase steels. Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2016, Bernkastel, Germany (2016)
Herbig, M.: Is the Neumann model for short fatigue crack propagation relevant in practice? Science Slam, Department Microstructure Physics and Alloy Design, MPIE, Düsseldorf, Germany (2016)
Ponge, D.; Kuzmina, M.; Sandlöbes, S.; Herbig, M.; Raabe, D.: Austenite formation along dislocations in medium manganese steels. Thermec 2016, Intl. Conf. on Processing & Manufacturing of Advanced Materials, Graz, Austria (2016)
Kuzmina, M.; Herbig, M.; Ponge, D.; Choi, P.-P.; Stoffers, A.; Sandlöbes, S.; Raabe, D.: Segregation engineering enables nanostructured dual-phase laminates via solute decoration and phase transformation at lattice defects. Colloquium lecture at Department of Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2015)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…