Gupta, A.; Dutta, B.; Hickel, T.; Neugebauer, J.: Thermodynamic phase stability in the Al–Sc system using first principles methods. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Dutta, B.; Hickel, T.; Neugebauer, J.: Coupling of lattice dynamics and magnetism in magnetic shape memory alloys: Consequences for phase diagrams. Asia Sweden meeting on understanding functional materials from lattice dynamics (ASMFLD) conference, Indian Institute of technology Guwahati, Guwahati, India (2014)
Dutta, B.; Körmann, F.; Dey, P.; Hickel, T.; Neugebauer, J.: Ab-initio based prediction of chemical trends for phase transitions in magnetic shape memory alloys. Weekly Seminar, Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Dutta, B.; Hickel, T.; Neugebauer, J.: Ab-initio based prediction of chemical trends in magnetic shape memory alloys. Mini Workshop on Lattice Dynamics, Uppsala University, Uppsala, Sweden (2013)
Dutta, B.; Hickel, T.; Neugebauer, J.: Phase transitions in magnetic shape memory alloys: Ab-initio based prediction of chemical trends. Fourth International Conference on Ferromagnetic Shape Memory Alloys (ICFSMA'13), Boise, ID, USA (2013)
Dutta, B.; Hickel, T.; Neugebauer, J.: Investigation of point defects in Heusler alloys: An ab initio study. Bunsen Colloquium at Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany (2016)
Dutta, B.; Hickel, T.; Olsen, R. J.; Larson, B. C.; Stocks, M.; Samolyuk, G. D.; Neugebauer, J.: Towards a microscopic understanding of lattice vibrations in disordered systems: implications for high entropy alloys. International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS 2016), Ringberg Castle, Tegernsee, Germany (2016)
Dutta, B.; Körmann, F.; Alling, B.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Interaction of magnetic and lattice degrees of freedom. International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS 2016), Ringberg Castle, Tegernsee, Germany (2016)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…