Hildebrandt, S.; Lymperakis, L.; Neugebauer, J.; Stutzmann, M. (Eds.): Proceedings of the 6th International Conference of Nitride Semiconductors. Wiley-VCH - physica status solidi, Weinheim, Germany (2006), 203 pp.
Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of Materials. In: Structural Materials and Processes in Transportation, pp. 481 - 495 (Eds. Lehmhus, D.; Busse, M.; Herrmann, A. S.; Kayvantash, K.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013)
Katnagallu, S.; Nematollahi, G. A.; Dagan, M.; Moody, M. P.; Grabowski, B.; Gault, B.; Raabe, D.; Neugebauer, J.: High Fidelity Reconstruction of Experimental Field Ion Microscopy Data by Atomic Relaxation Simulations. In: Proceedings of Microscopy & Microanaalysis 2017, Vol. 23, pp. 642 - 643. Microscopy and Microanalysis 2017, St. Louis, MO, USA, August 06, 2017 - August 10, 2017. Cambridge University Press, New York, NY, USA (2017)
Huber, L.; Grabowski, B.; Militzer, M.; Neugebauer, J.; Rottler, J.: Multi-scale quantum mechanical calculations of solute-grain boundary interaction. In: PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, pp. 779 - 784 (Eds. Chen, L.-Q.; Militzer, M.; Botton, G.; Howe, J.; Sinclair, C. W. et al.). International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, PTM 2015, Whistler, BC, Canada, June 28, 2015 - July 03, 2015. International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, Whistler, British Columbia (2015)
Korbmacher, D.; Glensk, A.; Grabowski, B.; Hickel, T.; Duff, A.; Finnis, M. W.; Neugebauer, J.: Ab initio description of the Ti BCC to ω transition at finite temperatures. In: PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, pp. 755 - 756 (Eds. Chen, L.-Q.; Militzer, M.; Botton, G.; Howe, J.; Sinclair, C. W. et al.). International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, PTM 2015, Whistler, BC, Canada, June 28, 2015 - July 03, 2015. International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, Whistler, BC, Canada (2015)
Neugebauer, J.; Glensk, A.; Leyson, G. P. M.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio description of finite temperature phase stabilities and transformations. In: PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, pp. 751 - 752 (Eds. Chen, L.-Q.; Militzer, M.; Botton, G.; Howe, J.; Sinclair, C. W. et al.). International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, PTM 2015, Whistler, BC, Canada, June 28, 2015 - July 03, 2015. PTM 2015, Whistler, British Columbia (2015)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Yi, S.; Letzig, D.; Pei, Z.; Zhu, L.-F.; Neugebauer, J.; Raabe, D.: Complementary TEM and ab ignition study on the ductilizing effect of Y in solid solution Mg–Y alloys. In: Proceedings of the 9th Intern. Conference on Magnesium alloys and their applications, pp. 467 - 472. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada, July 08, 2012 - July 12, 2012. (2012)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Electrostatic interactions between charged defects in supercells. CECAM Workshop, Lausanne, Switzerland, June 08, 2009 - June 10, 2009. Physica Status Solidi B 248 (5), pp. 1067 - 1076 (2011)
Petrov, M.; Holec, D.; Lymperakis, L.; Neugebauer, J.; Humphreys, C. J.: Strain-induced effects on the electronic structure and N K-edge ELNES of wurtzite AlN and AlxGa1-xN. 17th International Conference on Microscopy of Semiconducting Materials 2011, University of Cambridge, UK, April 04, 2011 - April 07, 2011. Journal of Physics Conference Series 326, pp. 012016-1 - 012016-5 (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.