Zheludkevich, M. L.; Serra, R.; Grundmeier, G.; Yang, L. H.; Ferreira, M. G. S.: Barrier properties of polyurethane coil coatings treated by microwave plasma polymerization. Surface and Coatings Technology 200 (12-13), pp. 4040 - 4049 (2006)
Wapner, K.; Grundmeier, G.: Spectroscopic analysis of the interface chemistry of ultra-thin plasma polymer films on iron. Surface and Coatings Technology 200 (1-4), pp. 100 - 103 (2005)
Raacke, J.; Giza, M.; Grundmeier, G.: Combination of FTIR reflection absorption spectroscopy and work function measurement for in-situ studies of plasma modification of polymer and metal surfaces. Surface and Coatings Technology 200 (1-4), pp. 280 - 283 (2005)
Carpentier, J.; Grundmeier, G.: Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films. Surface and Coatings Technology 192 (2-3), pp. 189 - 198 (2005)
Grundmeier, G.; Stratmann, M.: Adhesion and De-adhesion mechanisms at polymer/metal interfaces: Mechanistic understanding based on in situ studies of buried interfaces. Annual Review of Materials Research 35, pp. 571 - 615 (2005)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the Study of the Corrosion Resistance of Interfacial Thin Silicon Organic Films at Adhesive/Metal Interfaces. Silicon Chemistry 2 (5-6), pp. 235 - 245 (2005)
Wapner, K.; Schoenberger, B.; Stratmann, M.; Grundmeier, G.: Height-regulating scanning Kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Schönberger, B.; Stratmann, M.; Grundmeier, G.: Applications of a new height regulated Scanning Kelvin Probe in Adhesion and Corrosion Science. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Grundmeier, G.: Spatially resolved measurements of the diffusion of water in a model adhesive/silicon lap joint using FTIR-transmission-microscopy. International Journal of Adhesion and Adhesives 24 (3), pp. 193 - 200 (2004)
Barranco, V.; Carpentier, J.; Grundmeier, G.: Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate. Electrochimica Acta 49 (12), pp. 1999 - 2013 (2004)
Barranco, V.; Thiemann, P.; Yasuda, H. K.; Stratmann, M.; Grundmeier, G.: Spectroscopic and electrochemical characterisation of thin cathodic plasma polymer films on iron. Applied Surface Science 229 (1-4), pp. 87 - 96 (2004)
Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M.: Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates. Thin Solid Films 446 (1), pp. 61 - 71 (2004)
Shirtcliffe, N. J.; Stratmann, M.; Grundmeier, G.: In situ infrared spectroscopic studies of ultrathin inorganic film growth on zinc in non-polymerizing cold plasmas. Surf Interface Anal 35, 10, pp. 799 - 804 (2003)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.