Grundmeier, G.: Combined In-Situ IRRAS and Kelvin Probe Studies of Plasma Modifications on Polymers and Metals. COST 527 Workshop, Sant Feliu, Spain (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Non-destructive, real time in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new Scanning Kelvin Probe Blister Test. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the study of de-adhesion processes at thin film engineered adhesive/metal interfaces. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Stratmann, M.; Hausbrand, R.; Rohwerder, M.; Wapner, C.; Grundmeier, G.: Surface Modification of Iron based Alloys for Improved Corrosion Resistance and Adhesion. 13th Asian Pacific Corrosion Control Conference, Corrosion Symposium in NIMS, Tsukuba, Japan (2003)
Grundmeier, G.; Roßenbeck, B.: Spectroscopic, microscopic and electrochemical investigations of protective model latex films on iron. GDCH Jahrestagung, München, Germany (2003)
Grundmeier, G.; Stratmann, M.; Roßenbeck, B.: Spectroscopic, microscopic and electrochemical investigations of protective model latex films on iron. ECASIA, Berlin, Germany (2003)
Grundmeier, G.; Schinkinger, B.: Spectroscopic and Microscopic Analysis of Thin SiO2 Combustion CVD layers for Surface Engineering of Galvanised Steel. EURADH 2002, Glasgow, UK (2002)
Rohwerder, M.; Hausbrand, R.; Grundmeier, G.; Stratmann, M.: Study of electrochemical behaviour of MgZn2 with respect to its effect on the corrosion of Mg-containing zinc coatings on steel. ISE 2002, Düsseldorf, Germany (2002)
Grundmeier, G.: Plasma polymerisation and combustion CVD for the deposition of corrosion resistant thin interfacial films for polymer coated metals. GRC on Aqueous Corrosion 2002, New London, NH, USA (2002)
Grundmeier, G.; Schinkinger, B.: Spectroscopic and Microscopic Analysis of Thin SiO2 Combustion CVD layers for Surface Engineering of Galvanised Steel. Conference Proceedings, Adhesion and Surface Analysis, Loughborough, UK (2002)
Rohwerder, M.; Schilz, C. M.; Unger, M.; Grundmeier, G.: Versagen von Beschichtungssystemen auf Metallen aufgrund von korrosiver Belastung. GUS Diskussionstage "Feuchtklimasicherheit elektronischer Schaltungen", Gesellschaft für Umweltsimulation e.V. (GUS), München, Germany (1998)
Todorova, M.; Valtiner, M.; Grundmeier, G.; Neugebauer, J.: Temperature Stabilised surface reconstructions at polar ZnO(0001). Gordon Research Seminar ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…