Sustainability and Decarburization

Shaping our future in terms of sustainable technologies, new materials and industrial processes is one of the most important topics of our generation and we are in need of scientific and engineering answers. How can we avoid the use of carbon as energy and reductant carrier in the entire field of materials science and engineering? How can we make better and rare-earth free permanent magnets for electrical vehicles? How can we render alloys sustainable and improve recycling rates? Which are the novel materials that can withstand embrit­tlement caused by hydrogen? And what is the potential of new thermoelectric and so­lar cell absorber materials for green power generation? We have devoted our efforts to provide answers to these pressing ques­tions, showing you here some of our cur­rent research in the field of sustainability.

Here you will find all information about hydrogen research at the MPIE. The list contains research projects as well as press releases on latest publications and explanatory videos. more

Explanatory Videos 

All topics concerning sustainability and decarburization

Video interview with Stefan Wippermann about his latest research results more

The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect point defect structure caused by chemical variation. Following this, the defect structure can be correlated to mechanical properties such as fracture toughness, electrical resistivity, and the catalytic properties for possible future water-splitting applications.

Material scientist at the Max-Planck-Institut für Eisenforschung will focus on green steel production

The team of the Max-Planck-Institut für Eisenforschung investigates a new route to produce green steel through hydrogen plasma more

Research topics and location in Düsseltal were subjects of discussion more

The thermodynamic stability of computationally designed multicomponent compounds against decomposition into structures with less favorable properties is often unclear. In this project, we have used sophisticated finite temperature ab initio methods to determine the relative phase stabilities of promising Ce-Fe-Ti hard-magnetic materials. more

Understanding the atomic structure of functional nanomaterials and unraveling their impact on chemical reactions is important as it can provide guidelines for their improvement. In this study, low dimensional nanomaterials are synthesized using wet-chemical strategies and tested in various electrochemical reactions. Electron microscopy before and after the reactions allows to unravel the growth mechanism and the atomic arrangement as well as to identify degradation phenomena. more

It is four decades that lanthanides are being doped into semiconductors as a way to realize light emitters. The most interesting feature of lanthanide emission is their very sharp luminescent lines. It enables them to be used in various applications such as TV displays and solid state lasers. This is due to 4f electrons being effectively shielded from the surrounding crystal field by the outer filled 5s and 5p shells. In fact, the 4f shell is not fully occupied which allows transitions to happen within the f orbital. more

Multinary transition metal nanoparticles are promising candidates for energy applications. Our research is based on the synthesis and atomic-scale characterization of such multinary systems. The nanoparticles are prepared by sputtering of elements into ionic liquids. Depending on the synthesis conditions, they grow either in an amorphous or crystalline state. The amorphous particles can be transformed to different crystalline phases via electron beam bombardment or post annealing. more

The CarMON project, short for Carbon Metal-Oxide Nanohybrids, is performed by the INP - Leibniz Institute for Plasma Science and Technology (Greifswald), the INM - Leibniz Institute for New Materials (Saarbrücken) and our group. Novel materials are developed by combining metal oxides and carbonaceous materials for electrochemical energy storage and water desalination. Synergistic effects on the nanoscale between these two material types can lead to overall increased performance. more

Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study independently hydrogen absorption and further interaction with trap binding sites or defects and its effects on the mechanical behavior of metals. more

TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is still a problem which could be improved by increasing the Al content, Al-rich TiAl alloys have recently come into focus. more

Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ Fe–Al-based alloys for various applications. These activities have matured to a point that industrial processing of parts is now investigated in more detail by considering economic aspects. more

By characterizing the high N alloyed martensitic stainless bearing steel X30CrMoN15-1 in-depth, we rationalize the exceptional white etching crack resistance of this complex technical alloy in terms of the different grain boundary segregation behavior between nitrogen and carbon, the mechanical and thermodynamic stability of the precipitates, and the cleanliness of the steel. more

The aim of the project is to elucidate the mechanism behind white etching crack (WEC) formation in bearing applications and to create materials that are resistant to this failure mechanism. The most prominent example for WEC failure are gear bearings of wind turbines. However, also many other applications from rails, over clutches to washing machines are concerned. more

The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement. more

Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions of multi-component phase space for alloys whose properties can be tuned with a greater degree of control than previously achievable. The targeted exploration of composition spaces containing five or more elements presents a significant challenge due to the vast number of possible alloy combinations. Novel approaches are required to efficiently map the boundaries of unique phase and morphology formation domains over large regions of multi-principle-element composition space. more

With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H. more

Go to Editor View