All about Hydrogen

All about Hydrogen

Here you will find all information about hydrogen research at the MPIE. The list contains research projects as well as press releases on latest publications and explanatory videos.

Explanatory videos

Press Releases and research projects

“ROC” rocks: Green steel project funded by European Research Council

Prof. Dierk Raabe, director at the Max-Planck-Institut für Eisenforschung, wins ERC Advanced Grant more

Hydrogen-associated decohesion and localized plasticity in a high-Mn two-phase lightweight steel

Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and  advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition and microstructure significantly differ from the traditional plain-carbon steels. Here we focus on a high-Mn and high-Al lightweight steel and unravel the effects of H-associated decohesion and localized plasticity on its H-induced catastrophic failure.

  more

Impurity engineering for electrochemical nano-catalysts

Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses. However, upscaling anion-exchange membrane fuel cells (AEMFCs) is hindered by the slow kinetics of hydrogen oxidation reaction (HOR) at the anode.
  more

Hybrid hydrogen-based reduction of iron ores

Replacing carbon by hydrogen as the reducing agent in ironmaking offers a pathway to massively reduce the associated CO2 emissions. However, the production of hydrogen using renewable energy will remain as one of the bottlenecks at least in the next two decades. The underlying reasons are the low electrolysis productivity and the insufficient capacities in both renewable electricity and industrial infrastructures to produce sufficient amounts of green hydrogen, especially in view of the gigantic demand for currently 1.8 billion tons of steel being produced every year, with forecasts predicting 2.4 billion tons by the year 2040. We therefore demonstrate how the efficiency in hydrogen and energy consumption during iron ore reduction can be dramatically improved by the knowledge-based combination of two technologies: partially reducing the ore at low temperature via solid-state hydrogen-based direct reduction (HyDR) to a kinetically defined degree, and subsequently melting and completely transforming it to iron under a reducing plasma (i.e. via hydrogen plasma reduction, HPR) more

Hydrogen plasma-based reduction of iron ores

Iron- and steelmaking is the most staggering single source of CO2 emissions on the planet, accounting for ~7% of the global emissions. This fact challenges the current technologies to achieve carbon-lean steel production and reduce CO2 emissions by 80% until 2050. Among the sustainable alternatives for ironmaking, the hydrogen plasma reduction (HPR) is a promising route, as the associated by-product is water. In this process, a hydrogen plasma arc is ignited between an electrode and the ore in a conventional electrical arc furnace (EAF), Figure 1 (a). Thus, melting and reduction occur simultaneously, enabling the production of liquid iron in single step. The highly energetic hydrogen species existing in a reducing plasma also enable exothermic redox chemical reactions with enhanced kinetics, permitting energy savings.
  more

How hydrogen behaves in aluminium alloys

Researchers of the Max-Planck-Institut für Eisenforschung publish their latest findings in the journal Nature more

Multiscale and Operando Studies on the Role of Micro- and Nanostructures in Hydrogen-based Direct Reduction of Iron Oxides

The HYDRI project aims at disentangling the correlation between material micro-/nanostructures and the hydrogen-based direct reduction (HyDR) kinetics, to reveal the vital role of acquired defects in HyDR processes. A multiscale and time-resolved operando approach will be used to characterize micro-/nanostructures in HyDR. Gaining better insights into these effects enable improved access to the microstructure-based design of more efficient HyDR methods, with potentially high impact on the urgently needed decarbonization in the steel industry. more

In-situ investigation of H interaction with stacking faults (SFs) at the stress concentrated crack tip

The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work. more

Hydrogen embrittlement in high manganese lightweight steel

In this project we study the degradation of hydrogen embrittlement resistivity of austenitic high-Mn and high-Al lightweight steels upon age hardening and discover ways to mitigate this deterioration. more

Humboldt Foundation awards Khushubo Devi

Devi joined the MPIE to unravel the process of iron ore reduction with hydrogen more

Hydride formation and deformation mechanisms in titanium

This project targets hydrogen behaviour and hydride formation mechanisms in commercially pure titanium (CP-Ti). A particular focus is on the role of β-pockets. Additionally, knowledge on the deformation behaviour of hydrides and their interaction with the parent Ti matrix can help with design approaches to alleviate hydrogen embrittlement of these alloys.
  more

Understanding electrochemical water splitting.

Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence requires efficient catalysts. We use electrochemical in situ spectroscopy techniques to study this reaction in detail. more

III-V Semiconductors and alloys at the nanoscale: materi-als design for novel optoelectronic and elastic properties

Designing and controlling the nanoscale structure of semiconductors and alloys is a promising strategy in order to create materials with targeted optoelectronic and mechanical properties. In this context, III-V and III-N nanostructures are particularly attractive candidates for surmounting materials-related challenges in applications ranging from optoelectronics, power electronics and hydrogen diffusion barriers to hard and wear resistant coatings. more

Fundamentals of sustainable hydrogen-based metallurgy

The massive CO2 emissions associated with modern iron- and steelmaking have become one of the largest environmental burdens of our generation, and the international steel market is forecast to grow by at least 30–35 % during the next 30 years [1, 2]. Therefore, the institute conducts interdisciplinary and multiscale research on the physical and chemical foundations for improving the sustainability of steels, with a focus on reduced CO2-intense production and low-energy synthesis. These goals can in principle be reached by combining several types of iron carriers, such as oxidic fines, lump ore, or scrap, with a variety of carbon-free reduction media, such as hydrogen or ammonia, in different types of furnaces.
  more

Scanning Kelvin Probe for advanced measurement of hydrogen and electrochemical activity at buried interfaces

The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and this cooperation was continued, see e.g. [1, 2]. 
  more

Illuminated scanning flow cell

Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into hydrogen fuels would not only ease grid operation, but also power other energy demands, e.g. fuel cell vehicles.
  more

Model processes for hydrogen plasma and direct reduction of iron ore

Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.  more

How do electrochemical reactions work at the quantum level?

Video interview with Stefan Wippermann about his latest research results more

Dr. Yan Ma receives Walter Benjamin Grant of the German Research Foundation<br /> 

Material scientist at the Max-Planck-Institut für Eisenforschung will focus on green steel production
  more

Go to Editor View