Research Projects

Research Projects

Solid state dewetting behavior of CoCu alloy films
Solid state dewetting (SSD), leading to break-up and agglomeration of the thin films, can occur in the films with thicknesses in the order of hundreds of nanometers below the melting temperature of the film. Understanding the underlying processes particularly matters where the stability of the film in applications such as micro-electronics is of concern. On the other hand, we might be able to produce nano/micro particle assemblies with specific size or composition through a well-controlled dewetting procedure and also manipulating the properties of the film such as its thickness and composition. In this project, we investigate the SSD behavior of CoxCu100-x alloy thin films. We specifically focus on the effect of the film composition on dewetting behavior. more
Correlating defect structure to the functional properties of Fe1-xO Wüstite 
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect point defect structure caused by chemical variation. Following this, the defect structure can be correlated to mechanical properties such as fracture toughness, electrical resistivity, and the catalytic properties for possible future water-splitting applications.
  more
Electrical characteristics of grain boundaries
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and electrical properties. The latest properties are usually captured through macroscopic characterisation which limits investigation of individual GB types. This project aims to probe the electrical resistivity of individual GB segments having well-known structural and thermodynamic characters, and consequently interconnect their structural and electrical properties. more
Novel nanostructured ZrCu thin film metallic glasses with superior mechanical properties and thermal stability
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as multilayers and amorphous-nanocrystalline composites. more

Closed Projects

Thermal stability and thermomechanical behavior of CrFeCoNi compositionally complex alloy thin films
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these alloys in thin film form. The current project aims to investigate these properties within the framework of a joint  DFG/ANR project involving the collaboration of Prof. Alfred Ludwig (Ruhr-Universität Bochum, Germany), Dr. Dominique Chatain (CINaM, Marseille, France) and Dr. Natalie Bozzolo (CEMEF, Sophia Antipolis, France). more

Go to Editor View