Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Large Strain Warm Deformation and Subsequent Intercritical Annealing. ISUGS 2007 (International Symposium on Ultrafine Grained Steels), Kitakyushu, Japan (2007)
Hantcherli, L.; Eisenlohr, P.; Roters, F.; Raabe, D.: Application of a Phenomenological Approach to Mechanical Twinning in Crystal Plasticity Finite Element Modelling of High-Mn Steel. EUROMAT 2007, Nürnberg, Germany (2007)
Nikolov, S.; Sachs, C.; Counts, W. A.; Fabritius, H.; Raabe, D.: Modeling of the Mechanical Behavior of Bone at Submicron Scale through Mean-Field Homogenization. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2007), Nürnberg, Germany (2007)
Prymak, O.; Stein, F.; Frommeyer, G.; Raabe, D.: Phase equilibria in the Nb–Cr–Al system at 1150, 1300 and 1450 °C. Workshop "The Nature of Laves Phases IX", Stuttgart, Germany (2007)
Zaefferer, S.; Wright, S. I.; Raabe, D.: 3D-orientation microscopy in a FIB SEM: A new dimension of microstructure characterisation. M&M 2007, Microscopy and Microanalysis 2007 Meeting, Ft. Lauderdale, FL, USA (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided design of Ti-binaries for human implants. XVI. International Materials Research Congress, Cancun (Merrida), Mexico (2007)
Raabe, D.; Zaafarani, N.; Roters, F.; Zaefferer, S.: 3D studies on orientation patterning below nanoindents in Cu single crystals using 3D EBSD and crystal plasticity finite element simulations. 3rd Intern. Indentation Workshop, Cavendish Lab., Cambridge, UK (2007)
Balasundaram, K.; Grundmeier, G.; Raabe, D.: Nanomechanics of thin glassy polymer films. 3rd International Indentation Workshop, Cavendish Laboratory, University of Cambridge, UK (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.