Stein, F.: The Binary Fe–Al System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Kumar, K. S.; Stein, F.; Palm, M.: An in-situ electron microscopy study of microstructural evolution in a Co–Co2Nb binary alloy. MRS Fall Meeting 2008, Boston, MA, USA (2008)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. 20th Annual Rio Grande Symposium on Advanced Materials 2008, Albuquerque, NM, USA (2008)
Kumar, K. S.; Stein, F.; Palm, M.: Preliminary in-situ TEM observations of phase transformations in a Co–15 at.% Nb alloy. Workshop "The Nature of Laves Phases XI", MPIE Düsseldorf, Germany (2008)
Prymak, O.; Stein, F.: Composition dependence of site occupancy and c/a ratio in hexagonal C14 Laves phase of the Nb–Cr–Al system. TOFA Thermodynamics of Alloys 2008, Krakow, Poland (2008)
Stein, F.; Ishikawa, S.; Takeyama, M.; Kumar, K. S.; Palm, M.: Phase equilibria in the Cr–Ti system studied by diffusion couples and equilibrated two-phase alloys. Workshop "The Nature of Laves Phases XI", MPI für Eisenforschung, Düsseldorf, Germany (2008)
Stein, F.; Prymak, O.; Dovbenko, O. I.; Palm, M.: Phase equilibria of Laves phases in ternary Nb–X–Al systems with X = Cr, Fe, Co. Discussion Meeting on Thermodynamics of Alloys - TOFA 2008, Krakow, Poland (2008)
Voß, S.; Stein, F.; Raabe, D.: The mechanical properties of Nb–TM Laves phases - Sample preparation and the composition dependence of the microhardness in Nb–Fe Laves phases. Workshop "The Nature of Laves Phases XI", MPI für Eisenforschung, Düsseldorf, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…