Du, Y. J. A.; Ismer, L.; Rogal, J.; Hickel, T.; Neugebauer, J.; Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in alpha- and gamma-Fe. Physical Review B 84 (14), pp. 144121-1 - 144121-13 (2011)
Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic and electronic excitations. Physical Review B 84 (12), 125101 (2011)
Ismer, L.; Ireta, J.; Neugebauer, J.: A density functional theory based estimation of the anharmonic contributions to the free energy of a polypeptide helix. Journal of Chemical Physics 135 (8), pp. 084122-1 - 084122-7 (2011)
Marquardt, O.; Hickel, T.; Neugebauer, J.; Gambaryan, K. M.; Aroutiounian, V. M.: Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures. Journal of Applied Physics 110 (4), pp. 043708-1 - 043708-6 (2011)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Formation energies of point defects at finite temperatures. Physica Status Solidi B 248 (6), pp. 1295 - 1308 (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio study of electron paramagnetic resonance hyperfine structure of the silicon dangling bond: Role of the local environment. Physical Review B 83 (14), 144110, pp. 1 - 8 (2011)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Role of spin quantization in determining the thermodynamic properties of magnetic transition metals. Physical Review B 83 (16), 165114 (2011)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Hydrogen-enhanced plasticity at dilute bulk H concentrations: The role of H-H interactions and the formation of local hydrides. Acta Materialia 59, pp. 2969 - 2980 (2011)
Abbasi, A.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Materialia 59, pp. 3041 - 3048 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…