Gladkov, S.; Kochmann, J.; Reese, S.; Hütter, M.; Svendsen, B.: Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling. Journal of Non-Equilibrium Thermodynamics 41 (2), pp. 131 - 139 (2016)
Mianroodi, J. R.; Peerlings, R.; Svendsen, B.: Strongly non-local modelling of dislocation transport and pile-up. Philosopical Magazine A 96 (12), pp. 1171 - 1187 (2016)
Svendsen, B.; Clausmeyer, T.: Comparison of two models for anisotropic hardening and yield surface evolution in bcc sheet steels. European Journal of Mechanics - A/Solid 54, pp. 120 - 131 (2015)
Svendsen, B.; Gladkov, S.: Thermodynamic and rate variational formulation of models for inhomogeneous gradient materials with microstructure and application to phase field modeling. Acta Mechanica Sinica 31 (2), pp. 162 - 172 (2015)
Klusemann, B.; Fischer, G.; Böhlke, T.; Svendsen, B.: Thermomechanical characterization of Portevin-Le Chatelier bands in AlMg3 (AA5754) and modeling based on a modified Estrin-McCormick approach. International Journal of Plasticity 67, pp. 192 - 216 (2015)
Mianroodi, J. R.; Svendsen, B.: Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems. Journal of the Mechanics and Physics of Solids 77, pp. 109 - 122 (2015)
Dusthakar, D. K.; Menzel, A.; Svendsen, B.: Comparison of phenomenological and laminate-based models for rate-dependent switching in ferroelectric continua. GAMM-Mitteilungen 38 (1), pp. 147 - 170 (2015)
Klusemann, B.; Yalçinkaya, T.; Geers, M. G. D.; Svendsen, B.: Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Computational Materials Science 80, pp. 51 - 60 (2013)
Mianroodi, J. R.; Svendsen, B.: Modeling Dislocation-Stacking Fault Interaction Using Molecular Dynamics. Proceedings of Applied Mathematics and Mechanics 13 (1), pp. 11 - 14 (2013)
Hütter, M.; Svendsen, B.: Quasi-linear versus potential-based formulations of force-flux relations and the GENERIC for irreversible processes: Comparisons and examples. Continuum Mechanics and Thermodynamics 25 (6), pp. 803 - 816 (2013)
Klusemann, B.; Svendsen, B.; Vehoff, H.: Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture. International Journal of Plasticity 50, pp. 109 - 126 (2013)
Klusemann, B.; Svendsen, B.; Bargmann, S.: Analysis and comparison of two finite element algorithms for dislocation density based crystal plasticity. GAMM-Mitteilungen 36 (2), pp. 219 - 238 (2013)
Barthel, C.; Klusemann, B.; Denzer, R.; Svendsen, B.: Modeling of a thermomechanical process chain for sheet steels. International Journal of Mechanical Sciences 74, pp. 46 - 54 (2013)
Huang, G.-H.; Svendsen, B.: Model of mismatched contact for dislocation generation during coalescence of grains. Philosophical Magazine Letters 93 (4), pp. 246 - 253 (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…