Dehm, G.; Weiss, D.; Arzt, E.: In situ transmission electron microscopy study of thermal-stress-induced dislocations in a thin Cu film constrained by a Si substrate. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 309-310, pp. 468 - 472 (2001)
Legros, M.; Dehm, G.; Keller-Flaig, R.-M.; Arzt, E.; Hemker, K. J.; Süresh, S.: Dynamic observation of Al thin films plastically strained in a TEM. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 309-310, pp. 463 - 467 (2001)
Scheu, C.; Dehm, G.; Kaplan, W. D.: Equilibrium amorphous silicon-calcium-oxygen films at interfaces in copper-alumina composites prepared by melt infiltration. Journal of the American Ceramic Society 84 (3), pp. 623 - 630 (2001)
Zhang, D.; Dehm, G.; Clemens, H.: On the microstructural evolution and phase transformation in a high niobium containing γ-TiAl alloy. Zeitschrift für Metallkunde 91 (11), pp. 950 - 956 (2000)
Chatterjee, A.; Dehm, G.; Scheu, C.; Clemens, H.: Onset of microstructural instability in a fully lamellar Ti-46.5 at.% Al-4 al.% (Cr,Nb,Ta,B) alloy during short-term creep. Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 91 (9), pp. 755 - 760 (2000)
Dehm, G.; Arzt, E.: In-situ transmission electron microscopy study of dislocations in a polycrystalline Cu thin film constrained by a substrate. Applied Physics Letters 77 (8), pp. 1126 - 1128 (2000)
Zhang, D.; Dehm, G.; Clemens, H.: Effect of heat treatments and hot-isostatic pressing on phase transformations and microstructure in a β/B2 containing γ-TiAl based alloy. Scripta Materialia 42 (11), pp. 1065 - 1070 (2000)
Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Iron Substrates Borided with Ni2B Particles by Laser-Induced Surface-Alloying. Zeitschrift für Metallkunde 90 (11), pp. 920 - 929 (1999)
Bidlingmaier, T.; Wanner, A.; Dehm, G.; Clemens, H.: Acoustic Emission during Room Temperature Deformation of a γ-TiAl Based Alloy. Zeitschrift für Metallkunde 90, pp. 581 - 587 (1999)
Dehm, G.; Scheu, C.; Rühle, M.; Raj, R.: Growth and Structure of Internal Cu/Al2O3 and Cu/Ti/Al2O3 Interfaces. Acta Materialia 46 (3), pp. 759 - 772 (1998)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…