Khorashadizadeh, A.; Raabe, D.; Winning, M.; Pippan, R.: Recrystallization and Grain Growth in Ultrafine-Grained Materials Produced by High Pressure Torsion. Advanced Engineering Materials 13, pp. 245 - 250 (2011)
Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.; Rohrer, G. S.; Rollett, A. D.; Winning, M.: Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials 13, pp. 237 - 244 (2011)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: 3D tomographic EBSD measurements of heavily deformed ultra fine grained Cu-0.17wt%Zr obtained from ECAP. Materials Science Forum 584-586, pp. 434 - 439 (2008)
Molodova, X.; Khorashadizadeh, A.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal Stability of ECAP Processed Pure Cu and CuZr. Inter. Journal of Materials Research 98, pp. 269 - 275 (2007)
Ram, F.; Khorashadizadeh, A.; Zaefferer, S.: Kikuchi Band Sharpness: A Measure for the Density of the Crystal Lattice Defects. MSE 2014, Darmstadt, Germany (2014)
Khorashadizadeh, A.; Raabe, D.: Exploring the formation of different lamination configurations within the orientation space. 8th European Solid Mechanics Conference 2012, Graz, Austria (2012)
Khorashadizadeh, A.; Raabe, D.: Exploring the formation of different lamination configurations within the orientation space. 11th GAMM-Seminar on Microstructures, Universität Duisburg-Essen, Essen, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…