Saood, S.; Brink, T.; Liebscher, C.; Dehm, G.: Atomic structure of [111] tilt boundaries of Al in relation to their crystallographic parameters. International Microscopy Conference 2023 (IMC-20), Busan, South Korea (2023)
Brink, T.; Milanese, E.; Frérot, L.; Molinari, J.-F.: Simulation of adhesive wear mechanisms at the nanoscale and an approach towards mesoscale models. MSE Congress, Darmstadt, Germany (2022)
Frommeyer, L.; Brink, T.; Dehm, G.; Liebscher, C.: Atomic scale observations of Ag segregation in a high angle grain boundary in Cu. PICO 2022, Kasteel Vaalsbroek, The Netherlands (2022)
Frommeyer, L.; Brink, T.; Freitas, R.; Frolov, T.; Dehm, G.; Liebscher, C.: Characterization of the atomic structure of grain boundary phases in pure Cu. Sixth Conference on Frontiers of Aberration Corrected Electron Microscopy PICO 2021, vitual, Kasteel Vaalsbroek, The Netherlands (2021)
Brink, T.: Thermodynamics. Lecture: Lecture on Thermodynamics, Max Planck Institut für Eisenforschung (demnächst Max Planck Institute for Sustainable Materials), 4 lectures à 2 h, Düsseldorf, Germany, May 14, 2024 - June 11, 2024
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…