Gutiérrez-Urrutia, I.; Seol, J.-B.; Marceau, R. K. W.; Choi, P.; Raabe, D.: Multi-scale characterization of advanced structural steels: from the micro to the atomic-scale. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, Hawai, USA (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Li, Y. J.; Choi, P.; Herbig, M.; Kostka, A.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic Scale Understanding of 6.8 GPa Ultra-high Strength Pearlite. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, HI, USA (2013)
Raabe, D.; Choi, P.; Herbig, M.; Li, Y.; Zaefferer, S.; Kirchheim, R.: Iron – Mythology and High Tech: From Electronic Understanding to Bulk Nanostructuring of 1 Billion Tons. Summer School 2013 on Functional Solids – FERRUM - organized by Leibniz University Hannover, Goslar, Germany (2013)
Choi, P.-P.: Characterization of internal interfaces in Cu(In,Ga)Se2 thin-film solar cells using correlative microscopy. IEEE – Photovoltaic Specialist Conference, Denver, CO, USA (2013)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces in Cu(In,Ga)Se2 thin-film solar cells at the atomic-scale. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.-P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Nanoscale Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.