Raabe, D.: The Interplay of Lattice Defects and Chemistry at Atomic Scale and Why it Matters for the Properties of Materials. Van Horn Distinguished Lecturer Series, Cleveland, OH, USA (2023)
Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: Tackling hydrogen embrittlement sensitivity and poor low-temperature toughness of austenitic high manganese lightweight steel. Thermec 2023 - International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, Vienna, Austria (2023)
Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: The deceit of steel strength ductility diagrams: A case study on high manganese lightweight steel. 7th International Conference of Engineering Against Failure ICEAF 2023, Spetses, Greece (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…