Kirchlechner, C.; Malyar, N.; Dehm, G.: Insights into dislocation grain-boundary interaction by X-ray µLaue diffraction. Dislocations 2016, West Lafayette, IN, USA (2016)
Kirchlechner, C.: Synchrotron based µLaue diffraction to probe plasticity at interfaces. IRSP 2016, 14th International Conference Reliability and Stress-Related Phenomena in Nanoelectronics – Experiment and Simulation
, Dresden, Germany (2016)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Dislocation twin boundary interaction and its dependence on loading direction. 62. Metallkunde-Kolloquium, Lech am Arlberg, Austria (2016)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.: X-ray microdiffraction Laue experiments to understand plasticity at interfaces. 80th Annual Conference of the DPG and DPG Spring Meeting, Regensburg, Germany (2016)
Jaya, B. N.; Köhler, M.; Schnabel, V.; Raabe, D.; Schneider, J. M.; Kirchlechner, C.; Dehm, G.: Micro-scale fracture behavior of Co based metallic glass thin films. 2016 TMS Annual Meeting and Exhibition Symposium: In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques, Nashville, TN, USA (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. CNRS GDRi mecano: General Meeting
, Marseille, France (2015)
Dehm, G.; Imrich, P. J.; Malyar, N.; Kirchlechner, C.: Differences in deformation behavior of bicrystalline Cu micropillars containing different grain boundaries. MS&T 2015 (Materials Science and Technology) meeting, symposium entitled "Deformation and Transitions at Grain Boundaries", Columbus, OH, USA (2015)
Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. Size & Strain
, Oxford, UK (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…