Lübke, A.; Loza, K.; Patnaik, R.; Enax, J.; Raabe, D.; Prymak, O.; Fabritius, H.-O.; Gaengler, P.; Epple, M.: Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Advances 7 (11), pp. 6215 - 6222 (2017)
Prymak, O.; Stein, F.: The Ternary Cr–Al–Nb Phase Diagram: Experimental Investigations of Isothermal Sections at 1150, 1300 and 1450 °C. Journal of Alloys and Compounds 513, pp. 378 - 386 (2012)
Prymak, O.; Stein, F.: Solidification and High-Temperature Phase Equilibria in the Fe–Al-rich Part of the Fe–Al–Nb System. Intermetallics 18 (7), pp. 1322 - 1326 (2010)
Prymak, O.; Stein, F.; Kerkau, A.; Ormeci, A.; Kreiner, G.; Frommeyer, G.; Raabe, D.: Phase equilibria in the ternary Nb–Cr–Al system and site occupation in the hexagonal C14 Laves phase Nb(AlxCr1–x)2. In: Materials Research Society Symposium Proceedings, pp. 499 - 504 (Ed. Proceedings, M. S.). Materials Research Society Symposium. (2009)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Start of a collaborative research project on the sustainable production of manganese and its alloys being funded by European Union with 7 million euros
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science