Laaboudi, A.; Rohwerder, M.: Oxygen Reduction on Thiol SAM Modified Au(111). 209th Meeting of The Electrochemical Society, Denver, Colorado, USA (2006)
Rohwerder, M.; Stratmann, M.: Delamination of Polymer/metal Interfaces: On the Role of Electron Transfer Reactions at the Buried Interface. 209th Meeting of The Electrochemical Society, Denver, CO, USA (2006)
Rohwerder, M.: On the role of passive oxides at buried polymer/metal interfaces. The 9th International Symposium on the Passivation of Metals and Semiconductors, and the Properties of Thin Oxide Layers, Paris, France (2005)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of dye molecules from mesostructured microparticles. 104th Bunsentagung, Frankfurt a. M., Germany (2005)
Rohwerder, M.: Delamination von polymeren Beschichtungen: Offene Fragen und neue Ansätze. 1. Korrosionsschutz-Symposium: Korrosionsschutz durch Beschichtungen in Theorie und Praxis, Schlosshotel Villa Rheinfels, St. Goar, Germany (2005)
Ehahoun, H.; Stratmann, M.; Rohwerder, M.: Kinetics of O2-reduction at model interfaces investigated with a scanning Kelvin Probe using an O2-insensitive Ag/AgCl/KCl – tip. ISE Annual Meeting, Thessaloniki, Greece (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: The role of the electrode potential at the buried polymer/metal interface on electrochemically driven delamination: The case MgZn2. ISE Annual Meeting, Thessaloniki, Greece (2004)
Rohwerder, M.; Stratmann, M.: The effect of Oxygen Reduction on the Self-Assembly and Stability of Thiol Monolayer Films. 205th Meeting of the ECS, San Antonio, TX, USA (2004)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: Galvanizing of Defined Model Samples: On the Road to a Fundamental Physical Understanding of Hot-Dip Galvanizing. GALVATECH, Chicago, USA (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: Development of Zinc-Alloy Coatings with Inherent Delamination Stability for Organic Coatings. Galvatech '04, Chicago, IL, USA (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.