Cojocaru-Mirédin, O.; Stoffers, A.; Soni, P. U.; Würz, R.; Raabe, D.: Interfaces in Semiconductors: Application to photovoltaic materials. 61st American Vacuum Society International conference, Baltimore, MA, USA (2014)
Cojocaru-Mirédin, O.; Soni, P. U.; Würz, R.; Raabe, D.: Progress in interfaces characterization in solar cells using correlative techniques. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Cojocaru-Mirédin, O.; Stoffers, A.; Würz, R.; Raabe, D.: Role of internal interfaces in solar cells. International Workshop on Interface-dominated Materials, Bochum, Germany (2013)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces in Cu(In,Ga)Se2 thin-film solar cells at the atomic-scale. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.