Juricic, C.; Pinto, H.; Pyzalla, A. R.: Wachstumsspannungen und Eigenspannungen in Oxidschichten auf Armcoeisensubstraten. FA 13 Eigenspannungen der AWT, Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Remscheid (2007)
Berns, H.; Pinto, H.: Anisotropic Size Change During Continuous Quenching and Deep Freezing of Tool Steel. 5th Intern. Conf. on Quenching and Control of Distortion and European Conf. on Heat Treatment, Berlin, Germany (2007)
Pinto, H.: Stress & texture studies. 5th European Winter School (NESY 2007) Research with Neutron and Synchrotron Radiation, Planneralm Styria / Austria (2007)
Juricic, C.; Pinto, H.; Wrobleweski, T.; Pyzalla, A.: Internal Stresses in Oxid Layers on Iron Polycrystals. User Meeting HASYLAB bei DESY, Hamburg, Germany (2006)
Brito, P.; Pinto, H.; Spiegel, M.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Phase composition and internal stress development during the oxidation of iron aluminides. ICRS-8, Denver, CO, USA (2008)
Coelho, R. S.; Kostka, A.; Pinto, H.; dos Santos, J.; Pyzalla, A. R.: Microstructure and residual stresses of high-strength steel to aluminium alloy friction stir welds. ICRS-8, Denver, USA (2008)
Pinto, H.; Barbatti, C.; Guio, A.; Jahn, A.; Standfuß, J.; Pyzalla, A. R.: Application of EBSD to the characterization of induction-assisted welds in high strength. Electron Backscatter Diffraction Meeting, Sheffield, UK (2008)
Moscicki, M.; Pinto, H.; Paulmann, C.; Pyzalla, A. R.: An Automatic Procedure for Residual Stress Analysis in Individual Crystallites of a Polychrystalline Material. Euromat 2007, Nürnberg, Germany (2007)
Pinto, H.; Silva, P. A.; Kostka, A.; Chladil, H. F.; Clemens, H.; Pyzalla, A. R.: Microstructure and Residual Stress Formation in Oxide Layers Grown on the Gamma-Ti–45Al–5Nb Alloy. Euromat 2007, Nürnberg (2007)
Juricic, C.; Pinto, H.; Wroblewski, T.; Pyzalla, A.: The Effect of Crystal Orientation on the Oxidation Behavior of Iran Substrates. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Pinto, H.; Sawalmih, A.; Raabe, D.; Pyzalla, A.: Residual Stresses in the Exoskeleton of a Homarus americanus Lobster. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Pinto, H.; Sawalmih, A.; Raabe, D.; Pyzalla, A.: Residual Stresses in the Exoskeleton of a Homarus americanus Lobster. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Silva, P.; Pinto, H.; Kostka, A.; Chladil, H. F.; Pyzalla, A.: Microstructure and Residual Stress Formation in Oxide Layers Grown in High Niobium Containing g-TiAl Based Alloy. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.