Neugebauer, J.: From electrons to the design of structurally complex materials. SFB ViCoM conference EPT 2018: From electrons to phase transitions, Vienna, Austria (2018)
Neugebauer, J.: Exploration of Large Ab Initio Data Spaces to Design Structural Materials with Superior Mechanical Properties. Hume-Rothery Award Symposium, TMS 2018, Phoenix, AZ, USA (2018)
Neugebauer, J.: Understanding the fundamental mechanisms behind H embrittlement: An ab initio guided multiscale approach. Seminar E2M ("Wall Forum") at MPI for Plasma Physics, Garching, Germany (2018)
Neugebauer, J.: A first principles approach to model electrochemical reactions in an electrolytic cell. Workshop: The Electrode Potential in Electrochemistry - A Challenge for Electronic Structure Theory Calculations, Schloß Reisensburg, Günzburg, Germany (2017)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: Temperature-driven effects in functional materials: Ab initio insights. Talk at University Pierre and Marie CURIE (UPMC), Paris, France (2017)
Neugebauer, J.: Free energy sampling strategies for structurally complex materials. Workshop II: Stochastic Sampling and Accelerated Time Dynamics on Multidimensional Surfaces, IPAM, UCLA, Los Angeles, CA, USA (2017)
Dutta, B.; Olsen, R. J.; Mu, S.; Hickel, T.; Samolyuk, G. D.; Specht, E. D.; Bei, H.; Lindsay, L. R.; Neugebauer, J.; Stocks , M.et al.; Larson, B. C.: Lattice dynamics in high entropy alloys: understanding the role of fluctuations. EUROMAT 2017, Thessaloniki, Greece (2017)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. MPIE-ICAMS workshop, Ebernburg, Germany (2017)
Dey, P.; Yao, M.; Friák, M.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab-initio investigation of the role of kappa carbide in upgrading Fe–Mn–Al–C alloy to the class of advanced high-strength steels. ArcelorMittal Global R&D Gent, Thessaloniki, Greece (2017)
Neugebauer, J.: Fundamental compositional limitations in the thin film growth of metastable alloys. Rapidly Quenched & Metastable Materials 16, Leoben, Austria (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…