Grabke, H.-J.: Surface and interface reactions and diffusion during the high-temperature corrosion of metals and alloys. Defect and Diffusion Forum 194 - 199, pp. 1649 - 1660 (2001)
Müller-Lorenz, E. M.; Grabke, H.-J.: Metal dusting exposures of modified stainless steels. 5. Symp. on High Temperature Corrosion, pp. 955 - 962 (2001)
Piehl, C.; Tôkei, Z. S.; Grabke, H.-J.: Surface treatment and cold working as tools to improve oxidation behaviour of chromium steels. 5th Int. Symp. on High Temperature Corrosion, pp. 319 - 326 (2001)
Piehl, C.; Tôkei, Z. S.; Grabke, H.-J.: The role of fast diffusion paths in the selective oxidation of chromium steels. Defect and Diffusion Forum 194-199, pp. 1689 - 1694 (2001)
Sämann, N.; Spiegel, M.; Grabke, H.-J.: Influence of surface preparation on the corrosion of steels in simulated waste incineration environments. Materials Science Forum 369-372, pp. 963 - 970 (2001)
Grabke, H. J.; Müller-Lorenz, E. M.; Eltester, B.; Lucas, M.: Formation of chromium rich oxide scales for protection against metal dusting. Materials at High Temperatures 17 (2), pp. 339 - 345 (2000)
Grabke, H. J.; Müller-Lorenz, E. M.; Strauss, S.; Pippel, E.; Woltersdorf, J.: Effects of grain size, cold working, and surface finish on the metal-dusting resistance of steels. Oxidation of Metals 50 (3-4), pp. 241 - 254 (1998)
Grabke, H. J.; Müller-Lorenz, E. M.; Klöwer, J.; Agarwal, D. C.: Metal dusting of nickel-based alloys. Materials Performance 37 (7), pp. 58 - 63 (1998)
Grabke, H. J.; Müller-Lorenz, E. M.: Protection of high alloy steels against metal dusting by oxide scales. Materials and Corrosion-Werkstoffe und Korrosion 49 (5), pp. 317 - 320 (1998)
Schroer, C.; Spiegel, M.; Sauthoff, G.; Grabke, H.-J.: Fe–Cr–Si-alloys with enhanced resistance against high temperature corrosion in the presence of molten sulphate/chloride mixtures and HCl containing gases. Molten Salt Forum 5-6, pp. 441 - 446 (1998)
Biedenkopf, P.; Spiegel, M.; Grabke, H.-J.: High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions. Materials and Corrosion-Werkstoffe und Korrosion 48 (8), pp. 477 - 488 (1997)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.