Özcan, Ö.; Pohl, K.; Keil, P.; Grundmeier, G.: Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications 13 (8), pp. 837 - 839 (2011)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: A combined experimental-computational approach: Revealing the organosilane to zinc oxide binding mechanism. Euradh 2008 - Adhesion '08, St Catherine's College, Oxford, UK (2008)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Germany (2008)
Thissen, P.; Özcan, Ö.; Torres, E.; Diesing, D.; Grundmeier, G.: Combining Monte Carlo Kinetics and Density Functional Theory to simulate Temperature Programmed Desorption. American Vacuum Society 54th International Symposium, Seattle, WA, USA (2007)
Özcan, Ö.; Thissen, P.; Diesing, D.; Blumenau, A. T.; Grundmeier, G.: A Monte Carlo - DFT Study: Adsorption of organosilanes on polar ZnO(0001) surfaces. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO (0001) surfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO(0001) surfaces. 12th European Conference on Applications of Surface and Interface Analysis (ECASIA'07), Brussels, Belgium (2007)
Thissen, P.; Özcan, Ö.; Diesing, D.; Grundmeier, G.: Monte Carlo Simulation of Temperature Programmed Desorption Including Binding Energies and Frequency Factors Derived by DFT Calculations. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.: Synthesis, Characterisation and Functionalisation of ZnO Nanorods on Metals. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…