Rohwerder, M.: Zum Einfluß des Elektrodenpotentials auf die Selbstorganisation von Thiolen auf Gold. Seminar, Max-Planck-Institute for Polymer research (Prof. Knoll), Mainz, Germany (1997)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: On the influence of the electrode potential on growth and stability of thiol monolayer films: Scanning tunneling microscopic and electrochemical investigations. 3rd Indo-German Symposium on modern methods in electrochemistry, Bangalore, India (1996)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: Zum Einfluß des Elektrodenpotentials auf Wachstum und Zerstörung von Thiolfilmen. Bunsentagung, Jena, Germany (1996)
Rohwerder, M.: Organic monolayers as adhesive agents for organic coatings in corrosion protection. Seminar at Dep. Of Chemistry (Prof. R. Crooks), Texas A&M Univ., College Station, TX, USA (1995)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: The influence of the electrode potential on the self-assembly of decanethiol on the Au(111) surface. 188th Meeting of the ECS, Chicago, IL, USA (1995)
Rohwerder, M.; de Weldige, K.; Viefhaus, H.; Stratmann, M.: Adsorption selbst-organisierter Mercaptan-Monolagen auf Gold. Workshop on Development and Industrial Application of Scanning Probe Microscopes SXM1, Münster, Germany (1994)
Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: Role of Trigger Signal Spreading Velocity on Self-healing Capability of Intelligent Coatings for Corrosion Protection. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2019)
Uebel, M.; Shkirskiy, V.; Maltseva, A.; Lefèvre, G.; Volovitch, P.; Rohwerder, M.: New Insights on the Mechanism of Cathodic Driven Coating Delamination: Suppressed Cation Migration along Zn/Polymer Interface in CO2 Containing Atmosphere. Gordon Research Conferences 2018, New London, NH, USA (2018)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Conferences 2016, New London, NH, USA (2016)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Seminars 2016, New London, NH, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings with full-scale self-healing ability on zinc and galvanized steel. Gordon Research Conferences 2016, New London, NH, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings with full-scale self-healing ability on zinc and galvanized steel. Gordon Research Seminars 2016, New London, NH, USA (2016)
Pang, B.; Stratmann, M.; Vogel, D.; Erbe, A.; Rohwerder, M.: Characterization of electrochemical double layer formed on Au (111) electrode: a KPM, FTIR and APXPS investigation. 2nd Annual APXPS Workshop, Berkeley, CA, USA (2015)
Vogel, D.; Vogel, A.; Rohwerder, M.: The investigation of the internal oxidation during short-term annealing in binary and ternary alloys. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2015)
Vogel, D.; Vogel, A.; Rohwerder, M.: The investigation of the internal oxidation during midterm-term annealing in binary and ternary alloys. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2015)
Tran, T. H.; Vimalanandan, A.; Rohwerder, M.: Electrodeposited zinc-nanocomposite coatings for smart corrosion protection. EUROCORR 2013, the European Corrosion Congress, “For a blue sky”, Estoril, Portugal (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…