Vega-Paredes, M.; Aymerich Armengol, R.; Scheu, C.: Determining the degradation mechanisms and active species of electrocatalysts by identical location electron microscopy. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Jeju, South Korea (2023)
Vega-Paredes, M.; Arenas Esteban, D.; Garzón-Manjón, A.; Scheu, C.: How can electron tomography be used for studying the catalyst degradation of fuel cells. Advanced Electron Nanoscopy Group – Institut Catala de Nanociencia I Nanotecnologia, Bellaterra, Spain (2022)
Vega-Paredes, M.; Garzón-Manjón, A.; Rivas Rivas, N. A.; Berova, V.; Hengge, K. A.; Gänsler, T.; Jurinsky, T.; Scheu, C.: Ruthenium-Platinum Core-Shell Nanoparticles as durable, CO tolerant catalyst for Polymer Electrolyte Membrane Fuel Cells. 5th International Caparica Symposium on Nanoparticles/Nanomaterials and Applications (ISN2A), Online (accepted)
Vega-Paredes, M.: Degradation mechanisms during operation of high temperature polymer electrolyte membrane fuel cells. Bachelor, Universitat Autònoma de Barcelona, Spain (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.