Sun, G.; Grundmeier, G.: Surface-enhanced Raman spectroscopy of the growth of ultra-thin organosilicon plasma polymers on nanoporous Ag/SiO2-bilayer films. Thin Solid Films 515 (4), pp. 1266 - 1274 (2006)
Sun, G.: Characterization and Application of New SERS Active Substrates Prepared by Combined Plasma Polymerization and Physical Vapour Deposition. 11th ECASIA, Vienna, Austria (2005)
Sun, G.: Surface-enhanced Raman Spectroscopy Investigation of Surfaces and Interfaces in Thin Films on Metals. Dissertation, Ruhr-Universität, Fakultät für Maschinenbau, Institut für Werkstoffe, Bochum, Germany (2007)
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.