Chen, T.; Lu, W.; Li, J.; Chen, S.; Li, C.; Weng, G. J.: Tailoring tensile ductility of thin film by grain size graded substrates. International Journal of Solids and Structures 166, pp. 124 - 134 (2019)
Liu, C.; Lu, W.; Weng, G. J.; Li, J.: A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 756, pp. 284 - 290 (2019)
Wang, Z.; Lu, W.; Raabe, D.; Li, Z.: On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds 781, pp. 734 - 743 (2019)
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
Scandium-containing aluminium alloys are currently attracting interest as candidates for high-performance aerospace structural materials due to their outstanding combination of strength, ductility and corrosion resistance. Strengthening is achieved by precipitation of Al3Sc-particles upon ageing heat treatment.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…