Aparicio-Fernández, R.; Szczepaniak, A.; Springer, H.; Raabe, D.: Crystallisation of amorphous Fe – Ti – B alloys as a design pathway for nano-structured high modulus steels. Journal of Alloys and Compounds 704, pp. 565 - 573 (2017)
Springer, H.; Aparicio-Fernández, R.; Duarte, M. J.; Zhang, H.; Baron, C.; Kostka, A.; Raabe, D.: Alloy design and processing routes for novel high modulus steels. In: PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, p. 981 (Eds. Chen, L.-Q.; Militzer, M.; Botton, G.; Howe, J.; Sinclair, C. W. et al.). International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, PTM 2015, Whistler, BC, Canada, June 28, 2015 - July 03, 2015. PTM 2015, Whistler, British Columbia (2015)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…