Koyama, M.; Springer, H.; Merzlikin, S. V.; Tsuzaki, K.; Akiyama, E.; Raabe, D.: Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. International Journal of Hydrogen Energy 39 (9), pp. 4634 - 4646 (2014)
Koyama, M.; Akiyama, E.; Tsuzaki, K.; Raabe, D.: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Materialia 61 (12), pp. 4607 - 4618 (2013)
Akiyama, E.; Stratmann, M.; Hassel, A. W.: Discrete electrochemical transients of aluminium alloys generated by slurry jet impingement. J. Phys. D: Appl. Phys. 39, pp. 3157 - 3164 (2006)
Akiyama, E.; Hassel, A. W.; Stratmann, M.: A study of current transients caused by single particle impact on electrodes. In: Proceed. Asian Pacific Corr. Contr. Conf. 13, pp. C02 1 - C02 8. (2003)
Koyama, M.; Tasan, C. C.; Akiyama, E.; Tsuzaki, K.; Raabe, D.: Influence of hydrogen on dual-phase steel micro-mechanics. 2nd International Workshop on Physics-Based Modelling of Material Properties & Experimental Observations, Antalya, Turkey (2013)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. COST F2 2nd Workshop „Local Flow Effects in Hydrodynamic Systems”, Paris, France (2003)
Akiyama, E.; Hassel, A. W.; Stratmann, M.: A study of current transients caused by single particle impact on electrodes. 13th Asian Pacific Corrosion Control Conference, Osaka, Japan (2003)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. Seminar an der Graduate School of Engineering der Universität von Hokkaido, Sapporo, Japan (2003)
Akiyama, E.; Hassel, A. W.; Stratmann, M.: Measurements of electrochemical responses caused by a single particle impact in slurry impingement. 50th Zairyo-to-Kankyo Meeting, Okinawa, Japan (2003)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…