Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Ziegler, A. S.: Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. Journal of Structural Biology 188 (1), pp. 1 - 15 (2014)
Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Schmahl, W. W.; Ziegler, A. S.: Varying mechanical properties within the incisive cuticle of the terrestrial isopod Porcellio scaber resulting from region-dependent ultrastructure, elemental distribution and arrangement of calcite crystals. DGM Bio-inspired Materials: International Conference on Biological Material Science, Potsdam, Germany (2014)
Huber, J.; Ziegler, A. S.; Fabritius, H.-O.; Griesshaber-Schmahl, E.: Be inspired by isopod cuticle: Unusual cuticle organisation and mechanical properties within the incisive edge of the mandibles in two Crustacean species. EURO BioMAT Conference, Weimar, Germany (2013)
Huber, J.; Fabritius, H.-O.; Ziegler, A. S.: Structure, mineral distribution and mechanical properties of the Pars incisiva cuticule in the mandibles of Porcellio scaber Latreille, 1804. 105th Annual Meeting of the German Zoological Society, Konstanz, Germany (2012)
Huber, J.; Ziegler, A. S.; Fabritius, H.-O.; Griesshaber-Schmahl, E.: Be inspired by isopod cuticle: Unusual cuticle organisation and mechanical properties within the incisive edge of the mandibles in two Crustacean species. EURO BioMAT Conference, Weimar, Germany (2013)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…