Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Iron Substrates Borided with Ni2B Particles by Laser-Induced Surface-Alloying. Zeitschrift für Metallkunde 90 (11), pp. 920 - 929 (1999)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Rashkova, B.; Cohen, S. S.; Goren-Muginstein, G.; Bamberger, M. S.; Dehm, G.: Analytical and high resolution TEM analysis of precipitation hardening in Mg–Zn–Sn alloys. In: Proceedings of the 7th Multinational Congress on Microscopy 2005, pp. 183 - 184 (Eds. Ceh, M.; Drazic, G.; Fidler, S.). 7th Multinational Congress on Microscopy 2005, Portorož, Slovenia, June 26, 2005 - June 30, 2005. (2005)
Cohen, S. S.; Goren-Muginstein, G. R.; Avraham, S.; Dehm, G.; Bamberger, M. S.: Phase formation, precipitation and strengthening mechanisims in Mg–Zn–Sn and Mg–Zn–Sn–Ca alloys. In: Symposium on Magnesium Technology 2004, pp. 301 - 305. TMS Annual Meeting, Charlotte, NC, USA, March 14, 2004 - March 18, 2004. (2004)
Dehm, G.; Bamberger, M. S.: Microstructure and Properties of Ferrous Substrates Laser-Alloyed with Boride Particles. In: Proc. of the European Conference on Laser Treatment of Materials, pp. 221 - 226 (Ed. Mordike, B. L.). ECLAT 98, Hannover, Germany, September 22, 1998 - September 23, 1998. Werkstoff-Informationsgesellschaft mbH, Frankfurt, Germany (1998)
Medres, B.; Shepeleva, L.; Ryk, G.; Dehm, G.; Bamberger, M. S.; Kaplan, W. D.: The Pecularities of Steels Laser Treatment with CrB2 and Ni2B Powders. In: ICALEO '98: laser materials processing conference: proceedings, Vol. 2, pp. D51 - D57. International Congress on Applications of Lasers and Electro-Optics’98, Orlando, FL, USA. (1998)
Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe. In: Laser Materials Processing, Vol. 83a, pp. 128 - 137. International Congress on Applications of Lasers and Electro-Optics’97, San Diego, CA, USA, 1997. (1997)
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…