Krzywiecki, M.; Grządziel, L.; Powroźnik, P.; Kwoka, M.; Rechmann, J.; Erbe, A.: Oxide – organic heterostructures: a case study of charge displacement absence at a SnO2 – copper phthalocyanine buried interface. Physical Chemistry Chemical Physics 20 (23), pp. 16092 - 16101 (2018)
Krzywiecki, M.; Grządziel, L.; Sarfraz, A.; Erbe, A.: Charge transfer quantification in a SnOx/CuPc semiconductor heterostructure: investigation of buried interface energy structure by photoelectron spectroscopies. Physical Chemistry Chemical Physics 19 (19), pp. 11816 - 11824 (2017)
Grządziel, L.; Krzywiecki, M.; Genchev, G.; Erbe, A.: Effect of order and disorder on degradation processes of copper phthalocyanine nanolayers. Synthetic Metals 223, pp. 199 - 204 (2017)
Krzywiecki, M.; Grządziel, L.; Sarfraz, A.; Iqbal, D.; Szwajca, A.; Erbe, A.: Zinc oxide as a defect-dominated material in thin films for photovoltaic applications - experimental determination of defect levels, quantification of composition, and construction of band diagram. Physical Chemistry Chemical Physics 17 (15), pp. 10004 - 10013 (2015)
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.