Pei, Z.; Yin, J.; Liaw, P. K.; Raabe, D.: Author Correction: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14 (1), 3588 (2023)
Pei, Z.; Yin, J.; Liaw, P. K.; Raabe, D.: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14, 54 (2023)
Pei, Z.; Zhang, S.; Lei, Y.; Zhang, F.; Chen, M.: Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America 118 (51), e2114167118 (2021)
Pei, Z.; Stocks, G. M.: Origin of the sensitivity in modeling the glide behaviour of dislocations. International Journal of Plasticity 106, pp. 48 - 56 (2018)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Yi, S.; Letzig, D.; Pei, Z.; Zhu, L.-F.; Neugebauer, J.; Raabe, D.: Complementary TEM and ab ignition study on the ductilizing effect of Y in solid solution Mg–Y alloys. In: Proceedings of the 9th Intern. Conference on Magnesium alloys and their applications, pp. 467 - 472. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada, July 08, 2012 - July 12, 2012. (2012)
Hickel, T.; Aydin, U.; Sözen, H. I.; Dutta, B.; Pei, Z.; Neugebauer, J.: Innovative concepts in materials design to boost renewable energies. Seminar of Institute for Innovative Technologies, SRH Berlin University of Applied Sciences, Berlin, Germany (2020)
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.