Freysoldt, C.; Boeck, S.; Neugebauer, J.: Direct minimization technique for metals in density-functional theory. Physical Review B 79, 241103(R), pp. 1 - 4 (2009)
Qteish, A.; Al-Sharif, A. I.; Fuchs, M.; Scheffler, M.; Boeck, S.; Neugebauer, J.: Role of semicore states in the electronic structure of group-III nitrides: An exact-exchange study. Physical Review B 72, 155317 (2005)
Qteish, A.; Al-Sharif, A. I.; Fuchs, M.; Scheffler, M.; Boeck, S.; Neugebauer, J.: Exact-exchange calculations of the electronic structure of AlN, GaN and InN. Computer Physics Communications 169, p. 28 (2005)
Aydin, U.; Boeck, S.; Hickel, T.; Neugebauer, J.: Hydrogen solution enthalpies derived from first principles: Chemical trends along the series of transition metals. DPG Frühjahrstagung 2011, Dresden, Germany (2011)
Marquardt, O.; Hickel, T.; Grabowski, B.; Boeck, S.; Neugebauer, J.: Implementation and application of the k.p-formalism to electronic structure and Coulomb matrix elements. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Uchdorf, T.: Developing a general purpose database application for multiphysics. Diploma, Fachhochschule Aachen, Standort Jülich, Jülich, Germany (2008)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.