Körmann, F.; Hickel, T.; Neugebauer, J.: Influence of magnetic excitations on the phase stability of metals and steels. Current Opinion in Solid State and Materials Science 20 (2), pp. 77 - 84 (2016)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Ab Initio Determined Phase Diagram of Clean and Solvated Muscovite Mica Surfaces. Langmuir 32 (4), pp. 1027 - 1033 (2016)
Ma, D.; Grabowski, B.; Körmann, F.; Neugebauer, J.; Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Materialia 100, pp. 90 - 97 (2015)
Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Development and application of a Ni–Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Physical Review B 92 (13), 134107 (2015)
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.