Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Film thickness effects on the deformation behavior of Cu/Cr thin films on polyimide. TMS 2014: 143rd Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Dehm, G.: Shedding light on the role of interfaces for strengthening materials by using micromechanical testing. 60. Metallkunde-Jubiläumskolloquium, Lech am Arlberg, Germany (2014)
Dehm, G.: Cu–Cr nanocomposites and multilayers. Gordon Research Conference: Thin Film & Small Scale Mechanical Behavior, Bentley University, Boston, MA, USA (2014)
Dehm, G.: Localized mechanical study of individual interfaces in miniaturized Cu structures. MS&T14 - Materials Science & Technology 2014, Pittsburgh, PA, USA (2014)
Imrich, P. J.; Kirchlechner, C.; Motz, C.; Jeon, J. B.; Dehm, G.: In Situ Electron Microscopy and Micro-Laue Study of Plasticity in Miniaturized Cu Bicrystals. CAMTEC III, Symposium on Fine-Scale Mechanical Characterisation and Behaviour , Cambridge, UK (2014)
Kirchlechner, C.; Imrich, P. J.; Motz, C.; Dehm, G.: Plastic deformation of bi-crystalline micro pillars analyzed by in situ µLaue diffraction. TMS2014, Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Pizzagalli, L.; Dehm, G.; Thomas, O.: Structure and dynamics V: Mechanical properties at small scales. Condensed Matter in Paris: Mini-colloquium 32, Paris, France (2014)
Dehm, G.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. 2013 MRS Fall Meeting, Boston, MA, USA (2013)
Dehm, G.: Structure and Micromechanics of Materials. Materialwissenschaftliches Kolloquium ICAMS und Institut für Werkstoffe, RUB, Bochum, Germany (2013)
Dehm, G.: Probing deformation phenomena at small length scales. ECI on Nanomechanical Testing in Materials Research and Development IV, Olhão, Portugal (2013)
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.