He, Z. F.; Jia, N.; Ma, D.; Yan, H.-L.; Li, Z.; Raabe, D.: Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 759, pp. 437 - 447 (2019)
Diehl, M.; Kertsch, L.; Traka, K.; Helm, D.; Raabe, D.: Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 755, pp. 295 - 306 (2019)
Souza Filho, I. R.; Sandim, M. J. R.; Ponge, D.; Sandim, H. R. Z.; Raabe, D.: Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 754, pp. 636 - 649 (2019)
Wang, Z.; Lu, W.; Raabe, D.; Li, Z.: On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds 781, pp. 734 - 743 (2019)
Almeida Junior, D. R.; Zilnyk, K. D.; Raabe, D.; Sandim, H. R. Z.: Reconstructing the austenite parent microstructure of martensitic steels: A case study for reduced-activation Eurofer steels. Journal of Nuclear Materials 516, pp. 185 - 193 (2019)
Sandlöbes, S.; Korte-Kerzel, S.; Raabe, D.: On the influence of the heat treatment on microstructure formation and mechanical properties of near-alpha Ti–Fe alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 748, pp. 301 - 312 (2019)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…