Bambach, M.; Heppner, S.; Steinmetz, D.; Roters, F.: Assessing and ensuring parameter identifiability for a physically-based strain hardening model for twinning-induced plasticity. Mechanics of Materials 84, pp. 127 - 139 (2015)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. MSE 2014
, Darmstadt, Germany (2014)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. 2nd International Conference High Manganese Steel, HMnS 2014
, Aachen, Germany (2014)
Steinmetz, D.; Roters, F.; Eisenlohr, P.; Raabe, D.: A dislocation density-based constitutive model for TWIP steels. 1st International Conference on High Manganese Steels, Seoul, South Korea (2011)
Steinmetz, D.; Zaefferer, S.: Currents state of the art in EBSD: Possibilities and limitations. Seminar Talk at Ludwig-Maximilians-Universität, München, Germany (2011)
Steinmetz, D.; Zaefferer, S.: Improving the physical resolution of electron backscatter diffraction by decreasing accelerating voltage. EBSD 2010 Meeting, Rolls-Royce Leisure Association, Derby, UK (2010)
Steinmetz, D.; Zaefferer, S.: Quantitative determination of twin volume fraction in TWIP steels by high resolution EBSD. Materials Science and Technology (MS&T) 2010, Pittsburgh, PA, USA (2009)
Steinmetz, D.; Zaefferer, S.: Challenges of low-accelerating voltage electron backscatter diffraction. 3rd International Conference on Texture and Anisotropy of Polycrystals (ITAP-3), Göttingen, Germany (2009)
Steinmetz, D.; Zaefferer, S.: Towards ultrahigh resolution EBSD by use of low accelerating voltage. EBSD 2009 Meeting, University of Swansea, Wales, UK (2009)
Steinmetz, D.: A constitutive model of twin nucleation and deformation twinning in High-Manganese Austenitic TWIP steels. Dissertation, RWTH Aachen, Aachen, Germany (2013)
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
Scandium-containing aluminium alloys are currently attracting interest as candidates for high-performance aerospace structural materials due to their outstanding combination of strength, ductility and corrosion resistance. Strengthening is achieved by precipitation of Al3Sc-particles upon ageing heat treatment.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…