Alam, M.; Lymperakis, L.; Groh, S.; Neugebauer, J.: MEAM interatomic potentials of Ni, Re, and Ni–Re alloys for atomistic fracture simulations. Modelling and Simulation in Materials Science and Engineering 30 (1), 015002 (2021)
Koller, C. M.; Lymperakis, L.; Pogany, D.; Pobegen, G.; Ostermaier, C.: Mechanism leading to semi-insulating property of carbon-doped GaN: Analysis of donor acceptor ratio and method for its determination. Journal of Applied Physics 130 (18), 185702 (2021)
Alam, M.; Lymperakis, L.; Neugebauer, J.: Phase diagram of grain boundary facet and line junctions in silicon. Physical Review Materials 4 (8), 083604 (2020)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab initio-based bulk and surface thermodynamics of InGaN alloys: Investigating the effects of strain and surface polarity. Physica Status Solidi B 252 (5), pp. 855 - 865 (2015)
Albrecht, M.; Lymperakis, L.; Neugebauer, J.: Origin of the unusually strong luminescence of a-type screw dislocations in GaN. Physical Review B 90 (24), 241201 (2014)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab initio approach. Physical Review B 89 (8), 085307 (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.