Raabe, D.; Mattissen, D.: Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu–Ag–Nb wires. Acta Materialia 47 (3), pp. 769 - 777 (1999)
Mattissen, D.; Raabe, D.; Heringhaus, F.: Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite. Acta Materialia 47, pp. 1627 - 1634 (1999)
Marx, V.; Raabe, D.; Engler, O.; Gottstein, G.: Simulation of the texture evolution during annealing of cold rolled BCC and FCC matals using a cellular automation approach. Textures and Microstructures 28, pp. 211 - 218 (1997)
Raabe, D.: Texture simulation for hot rolling of aluminium by use of a Taylor model considering grain interactions. Acta Metallurgica et Materialia 43 (3), pp. 1023 - 1028 (1995)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Janssens, K. G. F.; Raabe, D.; Kozeschnik, E.; Miodownik, M. A.; Nestler, B.: Computational Materials Engineering – An Introduction to Microstructure Evolution. Academic Press, Elsevier, USA (2007), 360 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of Materials. In: Structural Materials and Processes in Transportation, pp. 481 - 495 (Eds. Lehmhus, D.; Busse, M.; Herrmann, A. S.; Kayvantash, K.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Anwendung der Textur-Komponenten-Kristallplastizitäts-FEM für die Simulation von Umformprozessen unter Berücksichtigung des Texturgradienten. In: Prozessskalierung, Strahltechnik, Tagungsband des 2. Kolloquiums Prozessskalierung im Rahmen des DFG Schwerpunktprogramms Prozessskalierung, Vol. 27, pp. 157 - 166 (Ed. Vollertsen, F.). BIAS-Verlag, Bremen (2005)
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
A wide range of steels is nowadays used in Additive Manufacturing (AM). The different matrix microstructure components and phases such as austenite, ferrite, and martensite as well as the various precipitation phases such as intermetallic precipitates and carbides generally equip steels with a huge variability in microstructure and properties.
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…